

КАТАЛОГ КОТЕЛЬНОГО ОБОРУДОВАНИЯ 2012

www.kvzr.ru, e-mail: sb@kvzr.ru

656922, Алтайский край, г.Барнаул, ул. Трактовая,2 Тел./факс: (38-52) 299-741, 299-742

Группа компаний «РОСЭНЕРГОПРОМ» – предлагает комплексные услуги в сфере систем коммунальной инфраструктуры и теплообеспечения.

Основными направления направлениями работы группы компаний «РОСЭНЕРГОПРОМ» являются:

- Энергоаудит и паспортизация
- Формирование и реализация программ энергосбережения
- Проектирование
- Изготовление и поставка котельного оборудования
- Строительство и монтаж
- Пусконаладочные работы
- Внедрение учетных систем

Энергоаудит и энергосервис коммунальной инфраструктуры

- Формирование энергетических паспортов объектов инфраструктуры
- Определение удельного расхода топлива
- Определение потерь тепловой энергии в тепловых сетях и зданиях
- Определение потерь электроэнергии
- Гидравлический расчет и регулирование сетей тепло-водоснабжения
- Разработка схем автоматизации
- Выдача заключений и режимных карт

Проектирование систем коммунальной инфраструктуры

- Предпроектные работы
- Проектирование тепловых и водопроводных сетей
- Проектирование котельных
- Проектирование мероприятий энергоэффективности и энергосбережения
- Оформление разрешительной документации

Изготовление и поставка котельного оборудования

- Водогрейные и паровые котлы на всех видах топлива
- Топочные устройства
- Модульные котельные
- Системы топливоподачи и золошлакоудаления
- Золоуловители и тягодутьевые механизмы
- Запасные части котельного оборудования
- Водоподготовительное и теплообменное оборудование
- Дымовые трубы
- Чугунное литье

Строительство, монтаж и наладка объектов коммунальной инфраструктуры

- Строительство объектов тепло-водоснабжения
- Монтаж котельных
- Монтаж энергосберегающего оборудования
- Наладка объектов и вывод на проектные показатели

Твердотопливные водогрейные котлы нового поколения <u>«HeatExpert»</u> для ЖКХ и отопительных котельных промышленных предприятий

Котлы нового поколения «**HeatExpert**» различной тепловой мощности для объектов ЖКХ на основе применения современных разработок в области теплоэнергетики.

- высокий КПД котла - работа котла на самотяге - безнакипность

повышенная надежность работы котламаксимальное удобство обслуживания

Котлы «HeatExpert» предназначены для получения горячей воды номинальной температурой на выходе из котла 95 (115) °C, рабочим давлением до 0,6 (6,0) МПа (кгс/см), используемой в системах централизованного теплоснабжения на нужды отопления, горячего водоснабжения.

Котлы предназначены для работы в открытых и закрытых системах теплоснабжения с принудительной циркуляцией воды. Вид сжигаемого топлива: каменный / бурый уголь.

Конструктивные особенности котлов «HeatExpert»:

Топка с радиальной воздухораспределяющей решеткой (РВР)

В топке PBP достигнуто максимальная эффективность сжигания топлива. Зеркало горения имеет максимально большую и равномерно распределенную область подачи воздуха в слой топлива. Оптимальный режим горения, позволяет не только более эффективно сжигать подаваемое на решетку топливо, но и устраняет зависимость эффективности сгорания топлива от его вида, и свойств по спекаемости, зольности и фракционности. Опытным путем было доказано, что одно только применение PBP позволяет снизить механический и химический недожог, и тем самым повысить КПД, связаное с активным горением и провалом на 3%. Простота и удобство в обслуживании, особенность устройства поверхности PBP позволяют оперативно снимать слой топлива и шлака из топки в случае аварийной ситуации в котельной.

Система регулирования тяги и дутья СРТД

СРТД позволяет обеспечить максимально эффективную работу котла на естественной тяге.

Работа котла на самотяге имеет неоспоримое преимущество – это исключение затрат на монтаж дымососа и затраты на электроэнергию в течение отопительного сезона. Для того чтобы обеспечить одновременно и высокий КПД котла и возможность работы на самотяге, мы применяем СРТД.

С применением СРТД решаются просто следующие задачи:

- сохраняется максимально высокий КПД котельной установки за счет развитой поверхности нагрева, до $85\,\%$.
- легкий выход на режим в переходный период при плюсовой температуре окружающего воздуха.
 - исключается конденсат в хвостовых поверхностях нагрева котла.
 - достаточная высота дымовой трубы 20 м.
 - обеспечивается максимальная належность котла.

Гидравлическая система Палиндром

Обеспечивает возможность высоконадежной и высокоэффективной работы котла по противоточной схеме, когда конвективная поверхность выступает в роли экономайзера, тем самым, обеспечивая повышение КПД котла еще на 5%. Скоростная вихревая гидравлическая схема движения теплоносителя, обеспечивает стабильную работу котла без водоподготовки.

Твердотопливные водогрейные котлы нового поколения <u>«HeatExpert»</u>, технические характеристики

Марка	котпя		HeatExpert	HeatExpert	HeatExpert	HeatExpert	HeatExpert	HeatExpert	HeatExpert	HeatExpert	HeatExpert
Марка	KUIJIA		1	2	3	4	5	6	7	8	9
Теплопроизводите.	льность	МВт	0,17	0,23	0,35	0,47	0,58	0,7	0,93	1,28	1,44
котла Гкал 0,15 0,2 0,3 0,4 0,5 0,6 0,8							1,1	1,25			
Отапливаемая пло			1500	2000	3000	4000	5000	6000	8000	11000	12500
при высоте 3 м, м^2			1500	2000	3000	1000	2000	0000	0000	11000	12300
Каменный уголь	КПД коменее,%	*	80	80	80	82	81	82	83	83	83
- · ·	расход т кг/ч	гоплива,	75	47	72	93	118	187	253	288	323
Бурый уголь	КПД коменее,%		74	74	74	74	74	74	74	74	74
Q ⁱ _н =2720 кКал/кг	расход т кг/ч	гоплива,	76	101	155	205	255	305	405	555	580
Расход условного топлива		кг/ч	27	35	54	69	88	104	140	188	214
Температура уходящих газов °C не более 260											
Номинальный расход рабочей среды		м ³ /ч	6	8	12	16	20	24	32	44	50
Температура воды		°C				7	<u>70 – 95 (90-115</u>)			
Давление рабочей среды		кгс/см2	3-6	3-6	3-6	3-6	3-6	2,5-6	2,5-6	2,5-6	2,5-6
Гидравлическое сопротивление кот перепаде тем 25°С, не более	ла при ператур	кгс/см ² (МПа)					0,7 (0,07)				
Аэродинамическое сопротивление, не		Па	80	30	25	50	80	20	20	100	70
Длина		MM	950	970	1950	2000	2100	2600	2880	3020	3380
Ширина		MM	1280	1400	1300	1450	1450	1770	1770	1770	1770
Высота		MM	2200	2410	1850	1850	1850	2080	2080	2220	2220

Твердотопливные водогрейные котлы ЯНТАРЬ

Твердотопливные водогрейные котлы Янтарь предназначены для получения горячей воды номинальной температурой на выходе из котла 95 (115) °C, рабочим давлением до 0,6 (6,0) МПа (кгс/см), используемой в системах централизованного теплоснабжения на нужды отопления, горячего водоснабжения.

Котел предназначен для работы в открытых и закрытых системах теплоснабжения с принудительной циркуляцией воды. Вид сжигаемого топлива: каменный / бурый уголь.

- компактность,
- надежность,
- быстрый выход на установленную мощность

Котел работает с уравновешенной тягой, которую обеспечивает дутьевой вентилятор и дымосос.

Блок котла представляет собой сварную конструкцию, состоящую из трубной системы (радиационной и конвективной поверхности нагрева), опорной рамы и каркаса с теплоизоляционными материалами, обшитого листовой сталью. Котлы имеют Π -образную сомкнутую компоновку. Топочная камера котлов состоит из труб Ø 57x3,5 мм, панели топочной камеры газоплотны. Конвективная поверхность нагрева состоит из пакетов выполненных из труб Ø 57x3,5 мм флажковой формы, для интенсификации теплообмена трубы пакетов расположены в шахматном порядке. Газы в конвективной части проходят два хода и выходят через газоход в верхней части задней стенки котла.

У котлов с ручной топкой под решеткой находится воздушный короб с лючком для очистки короба от золы и шлака. Короб служит для распределения воздушного потока, поданного вентилятором. В нижней части конвективной поверхности находится зольный бункер с лючком для очистки его от золы.

Теплоизоляция блоков котлов выполнена из огнеупорной плиты ПТЭ и муллитокремнеземистого войлока. Обшивка котлов выполнена из стальных листов. Для очистки конвективных поверхностей нагрева от сажистых отложений предусмотрен люк.

Котлы с ручной топкой под решеткой имеют воздушный короб с лючком для очистки короба от золы и шлака. Короб служит для распределения воздушного потока, поданного вентилятором. В нижней части конвективной поверхности находится зольный бункер с лючком для очистки его от золы.

Топливо в топку подается ручным способом через загрузочную дверцу и сжигается на колосниковой решетке либо на радиальной воздухораспределяющей решетке.

Возможно исполнение котлов с ручными топками с опрокидывающими колосниками. Конструкция данных котлов выполнена двухблочной — блок котла и ручная топка с опрокидывающимися колосниками. Мощность котлов с ручной топкой от 0,3 до 1,6 МВт.

Твердотопливные водогрейные котлы под забрасыватель поставляются двумя блоками: топочный блок и ручная топка. Топливо в бункер забрасывателя подается транспортером углеподачи. На фронте установлена плита для крепления забрасывателя и дверка для обслуживания топки и контроля процесса горения.

Котлы с механической топкой предназначены для сжигания каменных и бурых углей, оснащены бункером топки и системой золоудаления. Котлы с механической топкой поставляются без коробов. Короба и опоры изготавливаются на месте согласно монтажной документации. С фронта блока котла устанавливается механическая топка. Сбоку топочного блока предусмотрена дверка для обслуживания топки и контроля процесса горения.

Топливо в бункер топки подается транспортером углеподачи. Золошлакоудаление также производится транспортером.

Предлагаемые топки - ТШПМ. Мощность котлов с механической топкой от 0, 7 до 1,6 МВт.

Котлы с возможностью сжигания резервного топлива – дров. Мощность котлов от 0,35 до 1,6 МВт. Отличительной особенностью котла является наличие дополнительной дверки для загрузки топлива.

Возможно изготовление котлов под кирпичную обмуровку.

Твердотопливные водогрейные котлы ЯНТАРЬ, технические характеристики

Manya) MOTERO		КВр-0,35	КВр-0,47	КВр-0,58	КВр(м)-0,7	КВр(м)-0,93	КВр(м)-1,28	КВр(м)-1,44	КВр(м)-1,6
Марка	а котла		Янтарь-0,3	Янтарь-0,4	Янтарь-0,5	Янтарь-0,6	Янтарь-0,8	Янтарь-1,1	Янтарь-1,25	Янтарь-1,44
Теплопроизводител	ьность	МВт	0,35	0,47	0,58	0,7	0,93	1,28	1,44	1,6
котла Гкал		Гкал	(0,3)	(0,4)	(0,5)	(0,6)	(0,8)	(1,1)	(1,25)	(1,44)
Отапливаемая площадь при высоте 3 м, м ²			3000	4000	5000	6000	8000	10000	12500	14000
Рабочее давление вод	ды, МПа (кі	гс/см2)					лее 0,6 (6)			
Температура воды, °С						70-95	(90-115)			
Каменный уголь	КПД кот менее,%	ла, не	80	82	81	80	80	80	80	80
$Q_{H}^{i} = 5230 \text{ кКал/кг}$	расход топлива, кг/ч		72,6	94,7	117,3	141,8	190	253	300	315
Бурый уголь	КПД кот менее,%	ла, не	73	74	74	74	74	74	74	74
Q _н =2720кКал/кг	расход то кг/ч	оплива,	153	201	252	302	403	554	580	605
Гидравлическое сог	іротивлені	ие, МПа	0,06	0,065	0,065	0,065	0,065	0,065	0,07	0,07
Аэродинамическое сопротивление, МПа		72	135	217	70	115	257	200	216	
Габаритные	Длина, м	M	2100	2000	2050	2700	2880	3000	3300	3175
размеры	Ширина,	, MM	1300	1450	1450	1800	1800	1800	1800	2000
котельного блока	Высота,	MM	2000	1950	1950	2080	2080	2250	2250	2250

Возможные варианты топочных устройств

- Топка с радиальной воздухораспределяющей решеткой (PBP)
- Колосниковая топка
- Топка слоевая PBР с опрокидывающимися колосниками
- Топка слоевая колосниковая с опрокидывающимися колосниками
- Топка слоевая с забрасывателем ЗП-400 (ПТЛ-400) с опрокидывающимися колосниками
- Топка слоевая с забрасывателем ЗП-600 (ПТЛ-600) с опрокидывающимися колосниками
- Топка ТШПМ

Твердотопливные водогрейные котлы змеевиковые КВЗ до 4 МВт

Твердотопливные водогрейные котлы КВЗ предназначены для получения горячей воды номинальной температурой на выходе из котла $95\ (115)\ ^{\circ}\text{C}$, рабочим давлением до $0.6\ (6.0)\ \text{МПа}$ (кгс/см), используемой в системах централизованного теплоснабжения на нужды отопления, горячего водоснабжения.

Котел предназначен для работы в открытых и закрытых системах теплоснабжения с принудительной циркуляцией воды. Вид сжигаемого топлива: каменный / бурый уголь.

Котел работает с уравновешенной тягой, которую обеспечивает дутьевой вентилятор и дымосос.

Блок котла представляет собой сварную конструкцию, состоящую из трубной системы (радиационной и конвективной поверхности нагрева), опорной рамы и каркаса с теплоизоляционными материалами, обшитого листовой сталью. Котлы имеют П-образную сомкнутую компоновку. Топочная камера котлов состоит из труб Ø 57x3,5 мм, панели топочной камеры газоплотны. Конвективная поверхность нагрева состоит из пакетов выполненных из труб Ø 32x3,0 мм змеевиковой формы, для интенсификации теплообмена трубы пакетов расположены в

- компактность,
- быстрый выход на установленную мощность
- полная ремонтопригодность

шахматном порядке. Газы в конвективной части проходят два хода и выходят через газоход в верхней части задней стенки котла.

У котлов с ручной топкой под решеткой находится воздушный короб с лючком для очистки короба от золы и шлака. Короб служит для распределения воздушного потока, поданного вентилятором. В нижней части конвективной поверхности находится зольный бункер с лючком для очистки его от золы.

Теплоизоляция блоков котлов выполнена из огнеупорной плиты ПТЭ и муллитокремнеземистого войлока. Обшивка котлов выполнена из стальных листов. Для очистки конвективных поверхностей нагрева от сажистых отложений предусмотрен люк.

Котлы с ручной топкой под решеткой имеют воздушный короб с лючком для очистки короба от золы и шлака. Короб служит для распределения воздушного потока, поданного вентилятором. В нижней части конвективной поверхности находится зольный бункер с лючком для очистки его от золы.

Топливо в топку подается ручным способом через загрузочную дверцу и сжигается на колосниковой решетке либо на радиальной воздухораспределяющей решетке.

Возможно исполнение котлов с ручными топками с опрокидывающими колосниками. Конструкция данных котлов выполнена двухблочной — блок котла и ручная топка с опрокидывающимися колосниками. Мощность котлов с ручной топкой от 0,17 до 2,5 МВт.

Твердотопливные водогрейные котлы под забрасыватель поставляются двумя блоками: топочный блок и ручная топка. Топливо в бункер забрасывателя подается транспортером углеподачи. На фронте установлена плита для крепления забрасывателя и дверка для обслуживания топки и контроля процесса горения.

Котлы с механической топкой предназначены для сжигания каменных и бурых углей, оснащены бункером топки и системой золоудаления. Котлы с механической топкой поставляются без коробов. Короба и опоры изготавливаются на месте согласно монтажной документации. С фронта блока котла устанавливается механическая топка. Сбоку топочного блока предусмотрена дверка для обслуживания топки и контроля процесса горения.

Топливо в бункер топки подается транспортером углеподачи. Золошлакоудаление также производится транспортером.

Предлагаемые топки - ТШПМ, ТЛПх, ТЛЗМ. Мощность котлов с механической топкой от 0,7 до $4.0\,\mathrm{MBt}$.

Котлы с возможностью сжигания резервного топлива – дров. Мощность котлов от 0,35 до 2,5 МВт. Отличительной особенностью котла является наличие дополнительной дверки для загрузки топлива.

Возможно изготовление котлов под кирпичную обмуровку.

Твердотопливные водогрейные котлы змеевиковые КВЗ до 4 МВт, технические характеристики

Manya		КВр-0,17	КВр-0,23	КВр-0,35	КВр-0,47	КВр-0,58	КВр(м)-0,7	КВр(м)-0,93	КВр(м)-1,28	КВр(м)-1,44	КВр(м)-1,63	КВр(м)-1,86	КВр(м)-2,5	КВ(м)-3,0	КВ(м) -4,0
Марка	а котла	КВЗ-0,15	КВЗ-0,2	КВЗ-0,3	КВЗ-0,4	КВЗ-0,5	КВЗ-0,6	КВЗ-0,8	КВЗ-1,1	КВЗ-1,25	КВЗ-1,4	КВЗ-1,6	КВЗ-2,15	КВЗ-2,6	КВЗ-3,44
Теплопро	1,110,1	0,17	0,23	0,35	0,47	0,58	0,7	0,93	1,28	1,44	1,63	1,86	2,5	3,0	4,0
водителы ть котла	Гкал	0,15	0,2	0,3	0,4	0,5	0,6	0,8	1,1	1,25	1,4	1,6	2,15	2,6	3,44
Отаплива площадь высоте 3	при	1500	2000	3000	4000	5000	6000	8000	10000	12500	14000	16000	21500	26000	34500
Рабочее д воды	цавление						Не б	более 0,6 (6)) МПа (кгс/	см2)					
	тура воды							70-95 (90)-115), °C						
Каменны й уголь	КПД котла, не менее,%	80	80	80	82	81	82	83	83	83	82	83	85	85	82
Q ⁱ _н =5230 кКал/кг	расход топлива, кг/ч	45	48	72	93	118	187	253	288	323	373	495	585	774	864
Бурый уголь	КПД котла, не менее,%	73	73	76	76	76	78	78	78	78	77	78	79	79	76
Q ⁱ _н =2720 кКал/кг	расход топлива, кг/ч	76	104	145	193	242	377	518	589	660	764	1013	1210	1601	1661
Длина, мм	М	950	970	1950	2000	2050	2150	2450	2750	2950	3150	2750	3200	4300	6200
Ширина,	ММ	1280	1400	1300	1450	1450	1800	1900	1950	1950	1950	2050	2150	2000	2500
Высота, м	ИМ	2200	2410	2000	2050	2050	2100	2100	2300	2300	2500	2750	2900	2900	3000

Возможные варианты топочных устройств

- Топка с радиальной воздухораспределяющей решеткой (РВР), колосниковая топка
- Топка слоевая РВР с опрокидывающимися колосниками
- Топка слоевая колосниковая с опрокидывающимися колосниками
- Топка слоевая с забрасывателем ЗП-600 (ПТЛ-600) с опрокидывающимися колосниками
- Топка ТШПМ, топка ТЛПХ, топка ТЛЗМ

Твердотопливные водогрейные котлы Алмаз

Котлы на твердом топливе Алмаз предназначены для получения горячей воды номинальной температурой на выходе из котла 95 (115) °C, рабочим давлением до 0,6 (6,0) МПа (кгс/см), используемой в системах централизованного теплоснабжения на нужды отопления, горячего водоснабжения.

Котлы предназначены для работы в открытых и закрытых системах теплоснабжения с принудительной циркуляцией воды. Вид сжигаемого топлива: каменный / бурый уголь.

- безнакипность,
- надежность,
- возможность работы без дымососа

Конструкция котлов Алмаз выполнена моноблоком – блок котла и ручная топка (колосники чугунные либо топка с радиальной воздухораспределяющей решеткой (PBP)).

Котлы работают с уравновешенной тягой, которую обеспечивает дутьевой вентилятор и дымосос.

Блок котла представляет собой сварную конструкцию, состоящую из трубной системы (радиационной и конвективной поверхности нагрева), опорной рамы и каркаса с теплоизоляционными материалами, обшитого листовой сталью. Котлы имеют П-образную сомкнутую компоновку. Топочная камера котлов состоит из труб Ø 76х4,5 мм. Конвективная поверхность нагрева состоит из пакетов флажковой формы выполненных из труб Ø 76х4,5 мм, для интенсификации теплообмена трубы пакетов расположены в шахматном порядке. Газы в конвективной части проходят два хода и выходят через газоход в верхней части задней стенки котла.

У котлов с ручной топкой под решеткой находится воздушный короб с лючком для очистки короба от золы и шлака. Короб служит для распределения воздушного потока, поданного вентилятором. В нижней части конвективной поверхности находится зольный бункер с лючком для очистки его от золы.

Топливо в топку подается ручным способом через загрузочную дверцу и сжигается на колосниковой решетке либо на радиальной воздухораспределяющей решетке.

Теплоизоляция блоков котлов выполнена из огнеупорной плиты ПТЭ и муллитокремнеземистого войлока. Обшивка котлов выполнена из стальных листов. Для очистки конвективных поверхностей нагрева от сажистых отложений предусмотрен люк.

Котлы с ручной топкой под решеткой имеют воздушный короб с лючком для очистки короба от золы и шлака. Короб служит для распределения воздушного потока, поданного вентилятором. В нижней части конвективной поверхности находится зольный бункер с лючком для очистки его от золы.

Топливо в топку подается ручным способом через загрузочную дверцу и сжигается на колосниковой решетке либо на радиальной воздухораспределяющей решетке.

Возможно исполнение котлов с ручными топками с опрокидывающими колосниками. Конструкция данных котлов выполнена двухблочной – блок котла и ручная топка с опрокидывающимися колосниками.

Твердотопливные водогрейные котлы под забрасыватель поставляются двумя блоками: топочный блок и ручная топка. Топливо в бункер забрасывателя подается транспортером углеподачи. На фронте установлена плита для крепления забрасывателя и дверка для обслуживания топки и контроля процесса горения.

Котлы с механической топкой предназначены для сжигания каменных и бурых углей, оснащены бункером топки и системой золоудаления. Котлы с механической топкой поставляются без коробов. Короба и опоры изготавливаются на месте согласно монтажной документации. С фронта блока котла устанавливается механическая топка. Сбоку топочного блока предусмотрена дверка для обслуживания топки и контроля процесса горения.

Топливо в бункер топки подается транспортером углеподачи. Золошлакоудаление также производится транспортером.

Предлагаемые топки - ТШПМ. Мощность котлов с механической топкой от 0, 7 до 1,28 МВт.

Котлы с возможностью сжигания резервного топлива – дров. Отличительной особенностью котла является наличие дополнительной дверки для загрузки топлива.

Возможно изготовление котлов под кирпичную обмуровку.

Твердотопливные водогрейные котлы Алмаз, технические характеристики

Марка котла		КВр(м)-0,7 Алмаз-0,6	КВр(м)-0,93 Алмаз-0,8	КВр(м)-1,28 Алмаз-1,1
Теплопроизводительнос	МВт	0,7	0,93	1,28
ть котла	Гкал	0,6	0,8	1,1
Отапливаемая площадь п	ри высоте 3 м, м ²	6000	8000	10000
Рабочее давление воды, 1	МПа (кгс/см2)		Не более 0,6 (6))
Температура воды, °С			70-95 (90-115)	
Каменный уголь Q ⁱ _н =5230 кКал/кг	КПД котла, не менее, %	80	80	80
-3230 KNaJI/KI	расход топлива, кг/ч	143	191	263
Бурый уголь Q ⁱ _н =2720 кКал/кг	КПД котла, не менее, %	74	74	74
KIXAJI/ KI	расход топлива, кг/ч	298	397	547
Гидравлическое сопротив	вление, МПа	0,065	0,065	0,065
Аэродинамическое сопротивление, МПа		70	100	60
Гоборити во розмори в	Длина, мм	2700	2800	3340
Габаритные размеры котельного блока	Ширина, мм	1800	1800	1800
ROTCJIBHOLO OJIOKa	Высота, мм	2250	2250	2250

Возможные варианты топочных устройств

- Топка с радиальной воздухораспределяющей решеткой (РВР)
- Колосниковая топка
- Топка слоевая РВР с опрокидывающимися колосниками
- Топка слоевая колосниковая с опрокидывающимися колосниками
- Топка слоевая с забрасывателем ЗП-400 (ПТЛ-400) с опрокидывающимися колосниками
- Топка слоевая с забрасывателем ЗП-600 (ПТЛ-600) с опрокидывающимися колосниками
- Топка ТШПМ

Водогрейные котлы на дровах (КВр)

Водогрейный котел на дровах предназначен для получения горячей воды номинальной температурой на выходе из котла 95 (115) °C, рабочим давлением до 0,6 (6,0) МПа (кгс/см), используемой в системах централизованного теплоснабжения на нужды отопления, горячего водоснабжения.

Водогрейный дровяной котел приспособлен для работы в открытых и закрытых системах теплоснабжения с принудительной циркуляцией воды. Вид сжигаемого топлива: дрова.

Конструкция дровяного котла производства Котельного завода «Росэнергопром» выполнена моноблоком: блок котла и ручная колосниковая топка.

Отопительный котел работает с принудительным поддувом, который обеспечивает дутьевой вентилятор, и естественной тягой при наличии достаточной высоты дымовой трубы и правильно выполненных газоходах.

Блок котла на дровах представляет собой сварную конструкцию, состоящую из трубной системы (радиационной и конвективной поверхности нагрева), опорной рамы и каркаса с теплоизоляционными материалами, обшитого листовой сталью. Котлы на дровах имеют П-образную сомкнутую компоновку. Газы в конвективной части проходят два хода и выходят через газоход в верхней части задней стенки котла.

Под решеткой находится воздушный короб с лючком для очистки короба от золы и шлака. Короб служит для распределения воздушного потока, поданного вентилятором. В нижней части конвективной поверхности водогрейного котла находится зольный бункер с лючком для очистки его от золы.

Теплоизоляция блоков котлов выполнена из огнеупорной плиты ПТЭ и муллитокремнеземистого войлока. Обшивка котлов выполнена из стальных листов. Для очистки конвективных поверхностей нагрева от сажистых отложений предусмотрен люк.

Подача топлива и удаление продуктов сгорания (шлака) в дровяном котле производится ручным способом через загрузочные дверцы с фронта котла. Горение топлива происходит на решетке колосникового типа.

Котлы водогрейные КВр на дровах

Марка котла		КВр-0,23 л КД	КВр-0,35 л КД	КВр-0,47 л КД	КВр-0,58 л КД	КВр-0,7 л КД	К3р-0,93 л КД	КВр-1,28 л КД	
	МВт	0,23	0,35	0,47	0,58	0,7	0,93	1,28	
Мощность котла	Гкал	0,2	0,3	0,4	0,5	0,6	0,8	1,1	
Отапливаемая площадь при выс	оте 3 м, м ²	2000	3000	4000	5000	6000	8000	10000	
КПД, % (Проектное топливо - Есырая Q_r^i =2440 ккал/кг, $Wp \le 50$ %		80							
Рабочее давление воды, МПа (к	гс/см2)	Не более 0,6 (6)							
Температура воды, °С				70	0-95 (90-11:	5)			
Расход условного топлива, кг/ч		41,5	57	75	92,7	110,6	146,5	201	
Номинальный расход воды, м ³ /ч	[8	12	16	20	24	32	44	
Гидравлическое сопротивление,	МПа	Не более 0,07 (0,7)							
Аэродинамическое сопротивлен	50	51	56	61	67	77	80		
Длина, мм		1590	1940	2290	2640	2290	2965	3330	
Ширина, мм		950	1300	1500	1610	1750	1950	1950	
Высота, мм		2010	2050	2050	2050	2100	2200	2200	

Стандартная комплектация котлов КВр

Оборудование, входящее в комплект поставки

Котельный блок, топочное устройство, затворы чугунные, клапаны предохранительные регулируемые, вентили латунные, оправы для термометров, термометры, манометры, краны трехходовые, вентиляторы среднего давления.

Возможные варианты топочных устройств

- Топка с радиальной воздухораспределяющей решеткой (РВР)
- Колосниковая топка
- Топка слоевая РВР с опрокидывающимися колосниками
- Топка слоевая колосниковая с опрокидывающимися колосниками
- Топка слоевая с забрасывателем ЗП-400 (ПТЛ-400) с опрокидывающимися колосниками
- Топка слоевая с забрасывателем ЗП-600 (ПТЛ-600) с опрокидывающимися колосниками
- Топка ТШПМ
- Топка ТЛПХ
- Топка ТЛЗМ

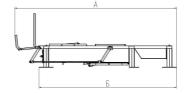
Оборудование, поставляемое по дополнительному соглашению

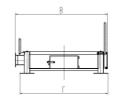
- Дымосос
- Золоуловитель
- Обвязка газового тракта (газоходы, шиберы)
- Насосное и теплообменное оборудование.

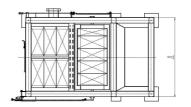
Рекомендуемые дымососы и золоуловители для работы водогрейных котлов

Тягодутьевые устройства состоят из дутьевых **вентиляторов, системы воздуховодов, газоходов,** дымососов, золоуловителей и дымовой трубы, с помощью которых обеспечиваются подача необходимого количества воздуха в топку и движение продуктов сгорания (топочных газов) по газоходам котла, а также удаление их в атмосферу.

Предварительным этапом перед настройкой тяги и дутья является подбор и установка тягодутьевого оборудования.

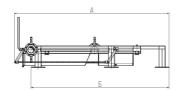

Подбор дутьевого вентилятора осуществляет завод изготовитель котла в зависимости от конструкции котла и типа сжигаемого топлива согласно напорным и расходным характеристикам вентилятора.

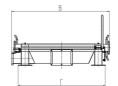

Подбор и установка дымососа и золоуловителя осуществляется на основании аэродинамических характеристик котлов и газового тракта, с учетом особенностей сжигаемого топлива и эксплуатационного режима котельной. При подборе дымососа следует учитывать то, что характеристики дымососа или группы дымососов должны удовлетворять всем предусмотренным режимам котельной. При любом режиме работы котельной, при работе котла на любой производительности котла при работе с принудительной тягой, на выходе из топки котла должно обеспечиваться разряжение 20-40 Па.

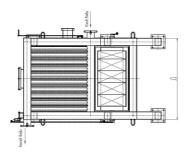

Правильно отрегулированные тяга и дутье позволяют эксплуатировать котел на максимальном КПД, предусмотренным его конструкцией. При настройке тяги и дутья необходимо следовать указаниям руководства по эксплуатации котла.

Правильно организованный процесс тяги и дутья уменьшает потери с химическим и механическим недожогом топлива, потери с уходящими газами и повышает КПД котельной установки в процессе эксплуатации.

Топка слоевая колосниковая с опрокидывающимися колосниками





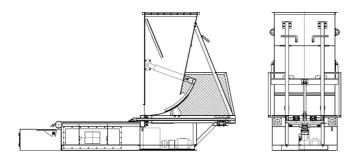

Ориентировочные габаритные размеры. Уточняются согласно модели котельного блока.

Производительность	Габаритные размеры, мм.								
котла, Гкал/ч	A	Б	В	Γ	Д				
0,4	2130	1960	1430	1200	1080				
0,5	2200	1990	1450	1180	1080				
0,6	2290	2150	1750	1540	1390				
0,8	2850	2425	1620	1550	1400				
1,1	2800	2270	1780	1480	1350				
1,6	2870	2480	1930	1570	1390				
2,15	3690	3570	2100	1760	1610				
4,0	5670	5450	2365	1950	1800				

Топка слоевая РВР с опрокидывающимися колосниками

Ориентировочные габаритные размеры. Уточняются согласно модели котельного блока.

Производительность	Габаритные размеры, мм.								
котла, Гкал/ч	A	Б	В	Γ	Д				
0,4	2160	1900	1440	1180	1080				
0,5	2230	2020	1430	1200	1100				
0,6	2260	2160	1790	1540	1400				
0,8	2490	2420	2350	1550	1400				
1,1	2900	2570	1900	1500	1405				
1,6	2865	2560	1815	1620	1500				


Топки механические моноблочные ТШПМ

Топка с шурующей планкой механическая моноблочная типа ТШПм предназначена для сжигания каменных и бурых углей. Мощность котлов, применяемых с топками ТШПМ от 0,6 до 2,5 МВт. Устанавливается в котельных, оборудованных системой подачи топлива в бункер топки и системой золоудаления, полностью механизирует ручной труд кочегара и обеспечивает автоматическую работу по заданному циклу в системе автоматики котла.

Топка состоит из топливного бункера, водоохлаждаемой колосниковой решетки, шурующей планки с электромеханическим приводом, вентилятора.

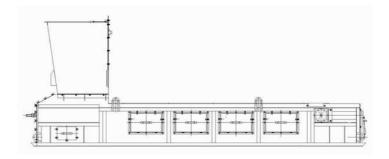
Техническая характеристика топок ТШПМ

П			Тип	топки				
наиме	нование параметров	ТШПм-0,8	ТШПм-1,45	ТШПм-2,0	ТШПм-2,5			
Производи	ительность, МВт	0,8	1,45	2,0	2,5			
Диапазон	изменения нагрузки, %	36	-110	40.	100			
Вид топли	ва		Каменный	и бурый уголь				
Коэффици топкой, не	ент избытка воздуха за	1	,6		1,4			
Активная г решетки, м	площадь колосниковой и ²	0,8	1,2	1,75	2,34			
	воды для охлаждения шурующей планки, cм²)	0,6 (6,0)						
Установоч	ная мощность, кВт	7	7	7	8,5			
Режим раб	ОТЫ	Наладочный и автоматический						
ale MM	длина	3419	4200	4500	5300			
абаритные абари		1180	1100	1180	1180			
Габа разм	высота	2023	2700	2530	2530			
Масса, т, не более		1,3	1,85	1,6	2,4			
Применен мощносты	ие, с котлами ю, МВт	0,7	0,93-1,28	1,86	2,5			

Поставляем полный перечень запасных частей топок ТШПМ.

Топки механические ТЛПх

Топки механические с ленточной цепной решеткой прямого хода ТЛПх предназначены для сжигания каменных и бурых углей в паровых и водогрейных котлах. Мощность котлов, применяемых с топками ТШПМ от 2,5 до 4,0 МВт.


Механическая топка с ленточной колосниковой решеткой прямого хода (ТЛПХ) состоит из угольного ящика, рамы с приводом и ведущим и ведомым валами, передвигающими ленточное колосниковое полотно, состоящее из трех типов колосников: крайних, ведущих и ведомых. Топливо подается транспортером углеподачи, через угольный ящик самотеком поступает на решетку, где сжигается в слое 100-200 мм. Определенная толщина слоя топлива на колосниковой решетке поддерживается при помощи регулятора слоя в угольном ящике и производится вручную посредством маховиков через червячные передачи. Под решеткой организованы камеры (зоны), куда подается необходимый воздух для горения. Подача воздуха должна быть непрерывна (иначе происходит спекание слоя и пережог колосников) и регулируется величиной открывания воздушных шиберов. Воздух под колосниковую решетку и на вторичное дутье подается от одного вентилятора котла.

Удаление шлака с колосниковой решетки происходит за счет движения колосникового полотна, которое приводится в движение приводом. Удаление шлака из шлакового канала производится **транспортером шлакозолоудаления**.

Рама топки состоит из двух щек, соединенных между собой поперечными балками. Рама устанавливается на башмаки и имеет свободное расширение в продольном и поперечном (от привода) направлениях. Опорный башмак рамы крепится к щеке болтами и подливается бетоном у фундамента. Для подъема топочного блока грузоподъемными средствами имеются грузовые скобы, которые срезаются после монтажа.

Техническая характеристика топок ТЛПх

			•	1				
Наименование параметра	ТЛПх-1,1/4,25	ТЛПх-1,1/3,5	ТЛПх-1,1/3,0	ТЛПх-1,87/3,0				
Диапазон изменения нагрузки, %		50100						
Теплонапряжение решетки рекомендуемое, МВт/м2		0,71,0 (1,2)						
Потери тепла от химического недожога, %, не более		1,0	0					
Потери тепла от механического недожога, %		10,013,5						
Характеристика топлива:	- выход летучих, %, не менее – 20 - влажность, %, не более - 25 - зольность, %, не более - 25 - содержание мелочи (0-6 мм),%, не более – 40 - максимальный размер куска, мм - 40							
Живое сечение решетки, %		5						
Скорость движения полотна, м/ч	1,319,3							
Ширина решетки, мм	1100 1870							
Расстояние между валами, мм	4250 3500 3000 3000							
Активная площадь решетки, м ²	3,9 3,1 2,7 4,6							
Применение	Котлы мощностью 2,5 - 4,0 МВт.							

Топки ТЛЗМ

Механические **топки ТЛЗМ** предназначены для установки к паровым котлам типов E-4-14P (КЕ-4-14C), E-6.5-14P (КЕ-6.5-14C), E-10-14P (КЕ-10-14C) и к небольшим водогрейным котлам КВр-3,0, КВр -4,0.

Технические характеристики топок механических с ленточной решеткой заднего хода ТЛЗМ

	Значение								
Наименование параметра	ТЛЗМ- 1,87/2,4	ТЛЗМ- 1,8/3,0	ТЛЗМ- 1,87/3,5	ТЛЗМ- 2,7/3,0	ТЛЗМ- 2,7/4,0				
Ширина колосникового полотна /Активная площадь полотна мм	1870/3,3	1870/4,4	1870/5,4	2700/6,4	2700/9,1				
Скорость движения полотна, м/ч		1,319,3							
Привод решетки: редуктор,тип	РГП-1	ПТБ-1200		РГП-1					
Электродвигатель, тип		4ПБМ	M112M041M	B5					
Электропривод, тип		ЭПУ-	1-1-3727ЕУ	ХЛ4					
Питатель	ПТЛ-40	0/3Π-400	П	ГЛ-600/3П-6	00				
Количество питателей, шт	2 2								
Масса расчетная, т	10,1	11,1	10,1	12,4	14,7				
Применение	КВм-3,0, КВм-4,0, котлы прочих заводов производи								

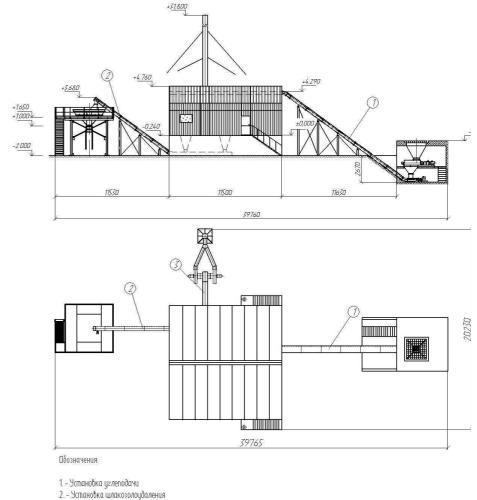
В объем поставки **топок ТЛЗМ** входят: полотно колосниковое ленточное в сборе с рамой, передним и задним валами, два **пневмомеханических забрасывателя ЗП-400 или ЗП-600**, предтопок, **привод ПТБ-1200** с электродвигателем и пускорегулирующей аппаратурой, клапан, метизы (в том числе фундаментные болты), запасные части по ведомости ЗИП, фасонные огнеупорные материалы.

Поставляем полный перечень запасных частей топок ТЛЗМ.

Модульные котельные установки

Модульные котельные установки (МКУ) предназначены для применения в системах теплоснабжения в качестве эффективного автономного источника энергии для отопления и горячего водоснабжения.

Модульные котельные установки изготавливаются на базе современных, экономичных, эффективных котлов КВ производства ООО Котельный завод «РОСЭНЕРГОРПОМ» и комплектуются вспомогательным оборудованием согласно техническим условиям Заказчика, отражаемых в опросном листе. Мощность поставляемых модульных котельных от 0,4 до 25 МВт.


С целью снижения затрат топлива, продления срока службы оборудования и безаварийной работы оборудования котельной, а также соблюдения требований экологической безопасности стандартная комплектация МКУ включает:

- котлы КВ (рабочие и резервные);
- теплообменное оборудование;
- водоподготовительное оборудование;
- систему золошлакоудаления и топливоподачи;
- золоуловители;
- тягодутьевые механизмы;
- вентиляцию;
- КИП и А;
- дымовую трубу.

Модульная котельная оборудована комнатой для оператора, душевой, уборной.

Котельные поставляются транспортабельными модулями максимальной заводской готовности.

Оборудование котельных установлено обвязано И пределах каждого модуля. Конструкция модульной котельной установки позволяет уменьшить до минимума монтажные работы на месте строительства котельной.

3. – Газоход

Ориентировочный перечень работ, необходимых для монтажа котельной: монтаж модулей котельной установки, монтаж транспортеров углеподачи и золошлакоудаления (для котельных с механизированной подачей топлива), монтаж дымовой трубы с газоходами, монтаж трубопроводов, соединяющих модули, подключение электросилового оборудования и автоматики.

Проектные, монтажные и пусконаладочные работы выполняются по отдельному договору.

Водогрейные котлы КВЗа на жидком и газообразном топливе

Водогрейные котлы, оснащенные горелочным устройством для сжигания жидкого и газообразного топлива, предназначены для выработки тепловой энергии для систем теплоснабжения зданий и сооружений. Котлоагрегаты работают с принудительной циркуляцией воды при рабочем давлении до $0.6~\mathrm{M\Pi a}$ (6 кгс/см²) и температурой нагрева воды до $95~\mathrm{(115)}$ °C.

За счет универсальной конструкции топочной камеры в жидкотопливных и газовых котлах КВЗа может применяться широкий ряд горелочных устройств отечественного и импортного производства.

Топочная камера котлов экранирована экранами из труб Ø 38-57x3,5, конвективные и экономайзерные пакеты выполняются из труб Ø 32-38x3,5 мм. Конструкция котлов KB3a, топка и экономайзер выполняется моноблоком. В заднем экране топочной камеры выполнено отверстие, в котором установлен взрывной клапан, предохраняющий конструкцию котла от разрушения при возникновении избыточного давления в топочной камере.

Водогрейная часть котла устанавливается на раму. Рама котла выполнена из швеллера и ставится на опоры. Опоры котла крепятся к ровной подготовленной поверхности анкерными болтами, за счет чего отпадает необходимость в изготовлении фундамента. Блок горелки устанавливается на подвижных опорах на фронт топочного блока, что дает возможность обслуживания горелки без разбора котла.

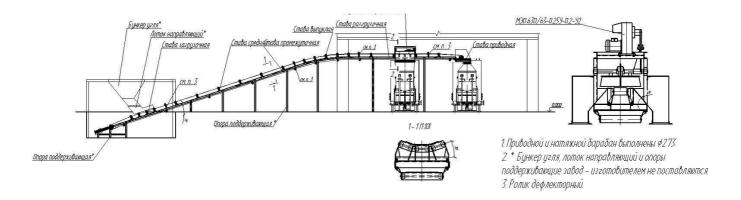
Выход газов в котлах происходит в верхней части котла. В случае необходимости возможно изготовление опускного газохода.

Теплоизоляция блоков котлов выполнена из огнеупорной плиты ПТЭ и муллитокремнеземистого войлока. Общивка котлов выполнена из стальных листов.

Водогрейные котлы <u>КВЗа</u> на жидком и газообразном топливе, технические характеристики

Марка котла	КВЗа- 0,46	КВЗа- 0,59	КВЗа- 0,69	КВЗа- 0,93	КВЗа- 1,28	КВЗа- 1,86	КВЗа- 2,33	КВЗа- 3,15
Теплопроизводительность, МВт	0,46	0,59	0,69	0,93	1,28	1,86	2,33	3,15
Топливо				Газ, мазу	т, дизель			
Температура рабочей среды, °C				70-95 (90-115)			
Давление рабочей среды, МПа				0,3	-0,6			
Температура уходящих газов, не более, °C	200							
Диапазон регулирования, %				40	.100			
КПД, %	91,0	91,0	91,0	91,0	91,5	91,5	91,5	91,5
Аэродинамическое сопротивление, Па, не более	480	550	600	680	750	820	860	950
Гидравлическое сопротивление котла, МПа	0,05	0,05	0,05	0,05	0,07	0,07	0,07	0,07
Длина, мм	1650	1710	1900	2200	2575	2900	3350	4050
Ширина, мм	900	900	900	900	900	1100	1500	2000
Высота, мм	1650	1725	1800	1950	2070	2450	2900	3500

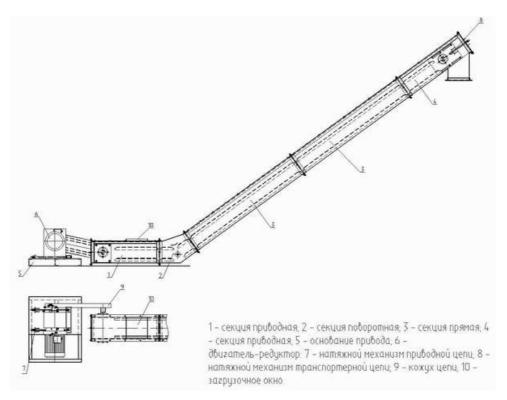
Согласно технического задания котлы производства «РОСЭНЕРГОПРОМ» комплектуются следующими горелками:


UNIGAS, Ecoflam, Wester Line, Oilon OY, WEISTHAUPT, ЖБЛ, РМГ, РГМГ, АПНД, ГГ, ГБЛ.

Ленточный и скребковый транспортеры топливоподачи и золошлакоудаления

Ленточный транспортер топливоподачи

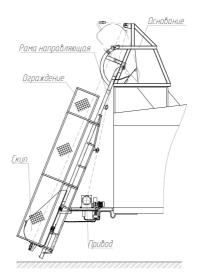
Разгрузка топлива, поступающего на склад отопительно-производственных котельных, производится при помощи механических приспособлений, из которых наибольшим распространением пользуется передвижной ленточный транспортер, при помощи которого топливо с угольного склада подается в расходный бункер.


Ленточный **транспортер предназначен** для перемещения угля и подъема его на необходимую высоту. Ленточные транспортеры устанавливаются, как в закрытых, так и открытых эстакадах. Его основой является бесконечная гибкая лента. Скорость ленточных транспортеров принимается 1,5 м/сек, с возможностью повышения ее до 2 м/сек при дальнейшем расширении станции. Угол наклона принимается не более 18°. Производительность ленточного транспортера зависит от скорости движения ленты и её ширины.

Комплектующие изделия для ленточных транспортеров: приводной натяжной барабан, приводная станция, роликоопоры желобчатые верхние несущие, роликоопоры плоские нижние (возвратные), ролики дефлекторные, транспортная лента, мотор-редукторы.

Скребковые транспортеры топливоподачи и золошлакоудаления

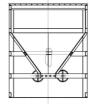
Скребковые транспортеры, отличительной особенностью которого является перемещение грузов при помощи движущихся скребков по неподвижному желобу. Применяются для подачи топлива в бункеры котлов, и удаления золы и шлака в отвал, либо бункер приемник.

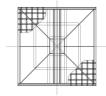


Скиповый подъёмник

Скиповые подъемники используются для перемещения сыпучих и кусковых материалов в вертикальном и резко наклонном направлениях. Выпускаемые модели Скип-100, Скип-200, Скип-300, Скип-400, Скип-600. Возможно изготовление скипового подъемника по техническому заданию заказчика.

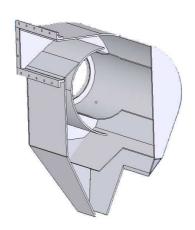
			••
Технические ха	navtanuetuvu	CIVILIDADLIV	полт оминисор
I CARRICCKIIC AA	Danicbheimnn	CKHHUDDIA	подосминисов


Наименование	Редуктор	Мощность			Объем
		эл. дв.	оборотов/мин	подъемника, м/с	ковша, м
100	Ч 80	2,2 кВт	750	0,22	0,085
200	Ч 100	2,2 кВт	750	0,22	0,165
300	Ч 125	3 кВт	1000	0,3	0,25
400	Ч 125	3 кВт	1000	0,3	0,35
600	Ч 125	3 кВт	1000	0,31	0,5



Бункеры топлива и шлака

В котельных с механизированной топливоподачей и золошлакоудалением, применяются бункеры топлива и шлака. Объемы бункеров и их конструкции рассчитываются в зависимости от производительности котлов и схемы котельной.

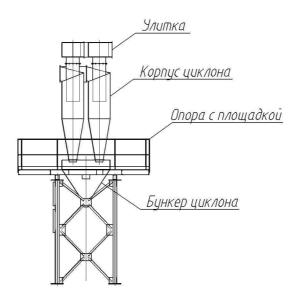

Золоуловители ЭП

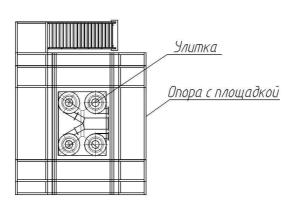
Золоуловитель $Э\Pi$ представляет собой горизонтальный циклон, предназначенный для сухой инерционной очистки газов от летучей золы с температурой до 290° C.

Золоуловители ЭП относятся к типу горизонтального циклона по расположению оси очищаемого потока газа. Очистка газа происходит посредством сил инерции и гравитации. Дымовые газы ускоряются и направляются вдоль стенки корпуса посредством щелевого устройства (направляющих лопаток). При удовлетворительном КПД золоуловители данного типа обладают относительно небольшим сопротивлением и габаритными размерами.

Золоуловители ЭП, технические характеристики

,									
		Размер	Значение						
Наименование па	раметра	-ность	ЭП-0,6	ЭП-0,8	ЭП-1,1	ЭП-1,6	ЭП-2,15		
Номинальная производительность		м ³ /ч	2150	2400	3360	6700	8450		
Диапазон рабочего регу	/лирования	%			90-100				
Коэффициент очистки	%			87					
Номинальное аэродинамическое сопротивление		Па		Не более 800					
Максимальная температура газов		°C	200						
Сечение входного отверстия		MM	200×600	200×600	250×700	250×1000	310×1250		
Объем бункера накопит	геля	M ³	0,05	0,05	0,05	0,05	0,07		
Масса золоуловителя		КГ	142	153	252	375	420		
	длина	MM	625	660	720	720	900		
Габаритные размеры	Габаритные размеры ширина		730	730	720	1088	1360		
	высота	MM	1100	1150	1315	1315	1640		
Полный срок службы		лет	Не менее 5						
Применение, котел мог	цностью	МВт	0,7	0,93	1,28	1,86	2,5		




Циклоны типа ЦН

Циклоны типа ЦН предназначены для сухой очистки газов, выделяющихся при некоторых технологических процессах (сушка, обжиг, сжигание топлива и т.д.), а также очистки аспирационного воздуха. Недопустимо их использование в условиях взрывоопасных сред, не рекомендуется их применять для улавливания слипающейся пыли.

В зависимости от производительности по газу и условий применения циклоны изготавливают одиночного исполнения (внутренний диаметр от 300 до 1400 мм) или группового исполнения – из двух, четырех, шести или восьми циклонов одинакового внутреннего диаметра (от 300 до 1000 мм). Групповые циклоны изготавливают с «левым» и «правым» вращением газового потока, одиночные – только «правого». В зависимости от компоновки групповые циклоны могут быть с камерой очищенного газа в виде улитки или в виде сборника. Бункеры циклонов - пирамидальной формы. При работе циклонов должна быть обеспечена непрерывная нагрузка пыли.

Циклон типа ЦН состоит из корпуса, бункера и выхлопной трубы. Очищаемые газы поступают в верхнюю часть корпуса через тангенциально приваренный входной патрубок. Улавливание пыли происходит под действием центробежной силы, возникающей при движении газа между корпусом и выхлопной трубой. Уловленная пыль ссыпается в бункер, а очищенный газ выбрасывается через выхлопную трубу. Конструктивная особенность батарейных циклонов состоит в том, что закручивание газового потока и улавливание пыли в них обеспечивается размещенными в корпусе аппарата циклонными элементами.

Циклоны типа ЦН-11, технические характеристики

Типоразмер циклона	•	Производител	ьность, м ³ /час	Рабочий объём бункера,	Масса, кг	
	части корпуса, м ²	При V=2,5 м/с	При V=4 м/с	M^3		
ЦН-11-300*1УП	0,07	630	1000	0,1	220	
ЦН-11-400*1УП	0,125	1110	1800	0,17	310	
ЦН-11-500*1УП	0,196	1800	2800	0,21	420	
<u>Ц</u> H-11-600*1УП	0,282	2500	4100	0,33	550	
ЦН-11-700*1УП	0,384	3500	5500	0,47	700	
ЦН-11-800*1УП	0,502	4500	7200	0,56	850	
ЦH-11-900*1УП	0,635	5700	9200	0,64	1030	
<u>Ц</u> H-11-1000*1УП	0,785	7100	11300	0,72	1220	
ЦН-11-1200*1УП	1,13	10200	16200	1,07	1650	
<u>Ц</u> H-11-1400*1УП	1,538	13900	22200	1,42	2180	
ЦН-11-300*2УП	0,14	1270	2000	0,2	370	
ЦН-11-300*2СП	0,14	1270	2000	0,2	390	
ЦН-11-400*2УП	0,25	2300	3600	0,31	540	
ЦН-11-400*2СП	0,25	2300	3600	0,31	550	
ЦН-11-500*2УП	0,392	3500	5600	0,5	760	
ЦН-11-500*2СП	0,392	3500	5600	0,5	750	
ЦН-11-600*2УП	0,564	5100	8100	0,6	970	
ЦН-11-600*2СП	0,564	5100	8100	0,6	940	
ЦН-11-700*2УП	0,768	6900	11100	0,83	1220	
ЦН-11-700*2СП	0,768	6900	11100	0,83	1170	
ЦН-11-800*2УП	1,004	9000	14400	1,15	1540	
ЦН-11-800*2СП	1,004	9000	14400	1,15	1480	
ЦН-11-900*2УП	1,27	11400	18300	1,45	1880	
ЦН-11-900*2СП	1,27	11400	18300	1,45	1800	
ЦН-11-400*4УП	0,5	4500	7200	0,54	1020	
ЦН-11-400*4СП	0,5	4500	7200	0,54	1010	
ЦН-11-500*4УП	0,784	7000	11300	0,77	1390	
ЦН-11-500*4СП	0,784	7000	11300	0,77	1320	
ЦH-11-600*4УП	1,128	10200	16300	1,11	1850	
ЦН-11-600*4СП	1,128	10200	16300	1,11	1750	
ЦН-11-700*4УП	1,536	13800	22000	1,5	2360	
ЦН-11-700*4СП	1,536	13800	22000	1,5	2230	
ЦН-11-800*4УП	2,008	18100	28900	2,27	3000	
ЦН-11-800*4СП	2,008	18100	28900	2,27	2830	
ЦН-11-900*4УП	2,54	22800	36600	2,28	3710	
ЦН-11-900*4СП	2,54	22800	36600	2,28	3530	
<u>Ц</u> H-11-500*6УП	1,176	10600	16900	1,3	2220	
ЦН-11-500*6СП	1,176	10600	16900	1,3	2120	
ЦН-11-600*6УП	1,692	15300	24400	2	2940	
ЦН-11-600*6СП	1,692	15300	24400	2	2820	
ЦН-11-700*6УП	2,304	20800	33100	2,67	3970	
ЦН-11-700*6СП	2,304	20800	33100	2,67	3620	
ЦН-11-800*6УП	3,012	27100	43300	3,82	4810	
ЦН-11-800*6СП	3,012	27100	43300	3,82	4570	
ЦН-11-900*6УП	3,81	34300	54900	5,55	5960	
ЦН-11-900*6СП	3,81	34300	54900	5,55	5730	
ЦН-11-500*8УП	1,568	14100	22600	2,33	3120	
ЦН-11-500*8СП	1,568	14100	22600	2,33	3040	

Циклоны типа ЦН-15, технические характеристики

циклона част ЦН-15-300*1УП ЦН-15-400*1УП	индрической ги корпуса, м ²	При V=2,5 м/с		объём	′
ЦН-15-300*1УП ЦН-15-400*1УП			Път V–4 ът/а	6 3	КГ
ЦН-15-400*1УП			При V=4 м/с	бункера, м ³	170
`	0,07	630	1000	0,1	170
	0,125	1110	1800	0,17	260
ЦН-15-500*1УП	0,196	1800	2800	0,21	370
ЦН-11-600*1УП	0,282	2500	4100	0,33	500
ЦН-15-700*1УП	0,384	3500	5500	0,47	650
ЦН-15-800*1УП	0,502	4500	7200	0,56	800
ЦН-15-900*1УП	0,635	5700	9200	0,64	980
ЦН-15-1000*1УП	0,785	7100	11300	0,72	1170
ЦН-15-1200*1УП	1,13	10200	16200	1,07	1600
ЦН-15-1400*1УП	1,538	13900	22200	1,42	2130
ЦН-15-300*2УП	0,14	1270	2000	0,2	270
ЦН-15-300*2СП	0,14	1270	2000	0,2	290
ЦН-15-400*2УП	0,25	2300	3600	0,31	440
ЦН-15-400*2СП	0,25	2300	3600	0,31	450
ЦН-15-500*2УП	0,392	3500	5600	0,5	660
ЦН-15-500*2СП	0,392	3500	5600	0,5	650
ЦН-15-600*2УП	0,564	5100	8100	0,6	870
ЦН-15-600*2СП	0,564	5100	8100	0,6	840
ЦН-15-700*2УП	0,768	6900	11100	0,83	1120
ЦН-15-700*2СП	0,768	6900	11100	0,83	1070
ЦН-15-800*2УП	1,004	9000	14400	1,15	1440
ЦН-15-800*2СП	1,004	9000	14400	1,15	1380
ЦН-15-900*2УП	1,27	11400	18300	1,45	1780
ЦН-15-900*2СП	1,27	11400	18300	1,45	1700
ЦН-15-400*4УП	0,5	4500	7200	0,54	820
ЦН-15-400*4СП	0,5	4500	7200	0,54	810
ЦН-15-500*4УП	0,784	7000	11300	0,77	1190
ЦН-15-500*4СП	0,784	7000	11300	0,77	1120
ЦН-15-600*4УП	1,128	10200	16300	1,11	1650
ЦН-15-600*4СП	1,128	10200	16300	1,11	1550
ЦН-15-700*4УП	1,536	13800	22000	1,5	2160
ЦН-15-700*4СП	1,536	13800	22000	1,5	2030
ЦН-15-800*4УП	2,008	18100	28900	2,27	2800
ЦН-15-800*4СП	2,008	18100	28900	2,27	2630
ЦН-15-900*4УП	2,54	22800	36600	2,28	3510
ЦН-15-900*4СП	2,54	22800	36600	2,28	3330
ЦН-15-500*6УП	1,176	10600	16900	1,3	1920
ЦН-15-500*6СП	1,176	10600	16900	1,3	1820
ЦН-15-600*6УП	1,692	15300	24400	2	2640
ЦН-15-600*6СП	1,692	15300	24400	2	2520
ЦН-15-700*6УП	2,304	20800	33100	2,67	3670
ЦН-15-700*6СП	2,304	20800	33100	2,67	3320
ЦН-15-800*6УП	3,012	27100	43300	3,82	4510
ЦН-15-800*6СП	3,012	27100	43300	3,82	4270
ЦН-15-900*6УП	3,81	34300	54900	5,55	5660
ЦН-15-900*6СП	3,81	34300	54900	5,55	5430
ЦН-15-500*8УП	1,568	14100	22600	2,33	2720
ЦН-15-500*8СП	1,568	14100	22600	2,33	2640

Батарейные циклоны

Батарейные циклоны БЦ представляют собой пылеулавливающие аппараты, составленные из большого количества параллельно установленных циклонных элементов, объединенных в одном корпусе и имеющих общие подвод и отвода газов, а также сборный бункер.

Корпус батарейного циклона, как правило, выполняется секционированным для сохранения оптимальной скорости движения газов в циклонных элементах при переменных нагрузках путем отключения соответствующих секций. Кроме того, секционирование уменьшает возможность ухудшения степени очистки газов за счет их перетока из одних элементов в другие через пылевой бункер, связанного с неодинаковым гидравлическим сопротивлением отдельных элементов (неодинаковостью из изготовления и неравномерным распределением газа по отдельным элементам), неодинаковой «пылевой нагрузкой» на элементы.

Батарейные циклоны БЦ-2

Батарейные циклоны БЦ-2 представляет собой пылеулавливающий аппарат, составленный из большого количества параллельно установленных циклонных элементов, объединенных в одном корпусе и имеющих общие подвод и отвод газов, а также сборный бункер.

Корпус батарейного циклона БЦ-2, как правило, выполняется секционированным для сохранения оптимальной скорости движения газов в циклонных элементах при переменных нагрузках путем отключения соответствующих секций. Кроме того, секционирование уменьшает возможность ухудшения степени очистки газов за счет их перетока из одних элементов в другие через пылевой бункер, связанного с неодинаковым гидравлическим сопротивлением отдельных элементов (неодинаковостью из изготовления и неравномерным распределением газа по отдельным элементам), неодинаковой «пылевой нагрузкой» на элементы. Конфигурация камер подвода заполненного и отвода очищенного газа чаще всего бывает клиновидная.

Батарейные циклоны БЦ-2, технические характеристики

Наименование Количество		Расход газа,	Габа	Macca,		
паименование	элементов	тыс. м3/ч	Длина	Ширина	Высота	КГ
БЦ-2-4х(3+2)	20	15,05-17,43	2 120	1 610	391	3 500
БЦ-2-5х(3+2)	25	18,9-21,86	2 400	1 610	4 010	4 100
БЦ-2-5х(4+2)	30	22,61-26,1	2 400	1 890	4 010	4 800
БЦ-2-6х(4+2)	36	27,18-31,4	2 680	1 890	4 110	5 600
БЦ-2-6х(4+3)	42	31,58-36,54	2 980	2 170	4 310	6 300
БЦ-2-7х(5+3)	56	42,2-48,89	3 260	2 450	4 410	7 900

Батарейные циклоны БЦ-259

Батарейные циклоны БЦ-259 представляют собой пылеулавливающие аппараты, составленные из большого количества параллельно установленных циклонных элементов, объединенных в одном корпусе и имеющих общие подвод и отвод газов, а также сборный бункер.

Корпус батарейного циклона БЦ-259, как правило, выполняется секционированным для сохранения оптимальной скорости движения газов в циклонных элементах при переменных нагрузках путем отключения соответствующих секций. Кроме того, секционирование уменьшает возможность ухудшения степени очистки газов за счет их перетока из одних элементов в другие через пылевой бункер, связанного с неодинаковым гидравлическим сопротивлением отдельных элементов (неодинаковостью из изготовления и неравномерным распределением газа по отдельным элементам), неодинаковой «пылевой нагрузкой» на элементы.

Батарейные циклоны БЦ-259, технические характеристики

Datapenniste dinatonist Big 2003 team teekne aapaktepnetin							
Наименование	Количество	Расход газа,	Габа	ритные раз	змеры	Macca,	
Паименование	элементов	тыс. м3/ч	Длина	Ширина	Высота	КГ	
БЦ-259-(3х2)	6	4	1 580	1 430	3 500	1 820	
БЦ-259-(3х3)	9	6	1 980	1 502	3 450	2 500	
БЦ-259-(4х3)	12	8	2 624	2 208	4 480	3 200	
БЦ-259-(4х4)	16	9	2 624	2 208	4 480	3 600	
БЦ-259-(4х5)	20	13	2 624	2 208	4 480	4 000	
БЦ-259-(6х4)	24	16	2 320	2 770	4 440	4 970	
БЦ-259-(6х5)	30	20	2 740	2 770	4 440	5 770	
БЦ-259-(6х6)	36	24	3 160	2 770	4 400	6 580	
БЦ-259-(6х7)	42	28	3 580	2 770	5 160	7 720	
БЦ-259-(6х8)	48	32	4 000	2 770	5 160	8 610	

Батарейные циклоны БЦ-512

Батарейные циклоны БЦ-512 представляют собой пылеулавливающие аппараты, составленные из большого количества параллельно установленных циклонных элементов, объединенных в одном корпусе и имеющих общие подвод и ОТВОДА газов, а также сборный бункер.

Корпус батарейного циклона, как правило, выполняется секционированным для сохранения оптимальной скорости движения газов в циклонных элементах при переменных нагрузках путем отключения соответствующих секций. Кроме того, секционирование уменьшает возможность ухудшения степени очистки газов за счет их перетока из одних элементов в другие через пылевой бункер, связанного с неодинаковым гидравлическим сопротивлением отдельных элементов (неодинаковостью из изготовления и неравномерным распределением газа по отдельным элементам), неодинаковой «пылевой нагрузкой» на элементы.

Батарейный циклон БЦ-512 данного типа предназначен для очистки от золы газовоздушных выбросов котельных, работающих на малозольном буром и каменном угле. Батарейный циклон БЦ-512 может быть использован для улавливания слипающихся зол, забивающих батарейные циклоны других типов.

Батарейные циклоны БЦ-512, технические характеристики

	Количество	Расход	Габај	Габаритные размеры			
Наименование	элементов газа, тыс. м3/ч		Длина	Ширина	Высота	Масса, кг	
БЦ-512-Р-1-(4х4)	16	44	5 835	3 560	7 075	12 500	
БЦ-512-1-(4х4)	16	44	4 180	3 650	7 075	10 800	
БЦ-512-Р-1-(4х6)	24	67	6 050	3 560	7 075	16 700	
БЦ-512-1-(4х6)	24	67	4 450	3 560	7 075	15 200	
БЦ-512-Р-2-(6х5)	30	84	6 130	4 190	7 480	21 500	
БЦ-512-2-(6х5)	30	84	4 150	4 190	7 480	18 700	
БЦ-512-Р-2-(6х6)	36	100	6 770	4 190	7 480	24 100	
БЦ-512-2-(6х6)	36	100	4 790	4 190	7 480	21 330	
БЦ-512-Р-2(6х7)	42	117	7 410	4 190	7 480	27 135	
БЦ-512-2(6х7)	42	117	5 130	4 190	7 480	24 900	
БЦ-512-Р-2-(6х8)	48	133	6 050	6 450	6 470	31 400	
БЦ-512-2-(6х8)	48	133	4 175	6 450	6 470	28 200	
БЦ-512-Р-3-(12х6)	72	200	6 050	9 360	6 970	46 000	
БЦ-512-3-(12х6)	72	200	6 050	9 360	6 970	41 800	
БЦ-512-Р-4-(8х12)	96	267	11 430	6 460	6 970	61 700	
БЦ-512-4-(8х12)	96	267	8 105	6 460	6 970	54 700	
БЦ-512-Р-6-(12х12)	114	400	11 430	9 360	6 970	88 800	
БЦ-512-6-(12х12)	114	400	8 105	9 360	6 970	74 600	

Дымовые трубы

Дымовые трубы предназначены для отвода продуктов сгорания от котлов и модульных котельных, работающих на всех видах топлива, как коммунально-бытового, так и промышленного назначения. Дымовые трубы могут использоваться для отвода дымовых газов, имеющих температуру до 350° С и слабоагрессивную химическую среду при ветровой нагрузке 30 кг/м2 (II ветровой район), снеговой нагрузке 250 кг/см2.

Дымоходы в настоящее время претерпели большие изменения. Это связано, в первую очередь, с тем, что тепловые устройства стали более эффективно работать и температура исходящих газов (дыма) существенно понизилась, что не позволяет быстро прогреть дымоход. Это приводит к образованию сернистого конденсата, который в короткие сроки разрушает дымоходы из кирпича, асбестоцемента и обычной стали. Применение модульных систем газоотводов из специальной нержавеющей стали решает эти проблемы.

Максимальная высота дымовой трубы достигает 35 м. Конструкция труб позволяет осуществлять перевозку и монтаж на месте конкретного объекта. Проектная высота газоотвода выполняется путем набора отдельных секций в процессе монтажных работ. Газоотводы собираются как конструктор, устанавливаются друг в друга и крепятся саморезами или заклепками. На их монтаж уходит несколько часов.

Дымовые трубы соответствуют требованиям нормативных документов.

Дымовые трубы при естественной тяге имеют обычно цилиндрическую форму.

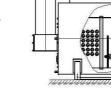
Металлические трубы для отвода дымовых газов с температурой до 350⁰C

Марка трубы	Н, мм	R, мм
Труба D325	20000 - 30000	9700
Труба D400	20000 - 30000	15480
Труба D425	20000 - 30000	15480
Труба D500	21000 - 35000	15480
Труба D600	21000 - 35000	15480
Труба D800	21000 - 35000	15480
Труба D1000	21000 - 35000	15480

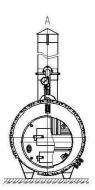
Паровые жаротрубные котлы КП

Котлы паровые представляют собой одножаровую горизонтальную конструкцию и состоят из двух цилиндров разного диаметра, вставленных одну в другой и соединенных между собой фланцами и паросборником. Паросборник котла приварен к наружному барабану сверху вдоль его образующей и сообщается с барабаном котла через отверстия, расположенные в верхней его части.

В передней части жаровой трубы размещена топка, а в задней части – конвективный пучок труб. К фронтовой стороне котла крепится чугунная фронтовая плитка, имеющая крепление для установки вентилятора, который служит для принудительной подачи воздуха в подколосниковое пространство и форсирования процесса горения. Для управления и защиты котлоагрегата и вспомогательного оборудования предусмотрены пульт управления и контрольно-измерительные приборы, сигнализирующие об отклонении регулируемых параметров котлоагрегата и его неисправности. Физический принцип действия КВ-300 (КП-300) основан на сжигании твердого топлива (угля) в топках котлов и дальнейшая передача тепловой энергии сгоревшего топлива при помощи теплообменника теплоносителю. Удаление продуктов сгорания происходит через сборную дымовую трубу.


Возможно применение котла в водогрейном режиме.

Паровые жаротрубные котлы КП, технические характеристики


Наим	енование параметра	Размерность		Зн:	ачение		
Тип котла		-	КП-300	КП-500	КП-700	КП-1000	
Паропроизводительнос	ТЬ	кг/ч	300	500	700	1000	
Теплопроизводительно	сть котла	МВт	0,22	0,37	0,52	0,74	
Рабочее давление пара	не более			0,0	07 (0,7)		
Рабочее давление воды	(водогрейный режим)	МПа		0.	,3 (3,0)		
Минимально допустим режим)	ое рабочее давление воды (водогрейный	(кгс/см ²)		0,	,1 (1,0)		
Температура пара не более		0.0			115		
Температура воды на выходе не более (водогрейный режим)		°C	95				
	TROPIO		Кузнецкий Д Qir=5230 ккал/кг				
Топливо:	твердое		Харанорский Б1 Q_r^i =2720 ккал/кг				
	газообразное	-	Природный газ Q_r^i =8		аз Q ⁱ _r =8120 кка	2 ⁱ r=8120 ккал/кг	
	жидкое	-	Дизельное топливо $Q_r^i = 10200$ ккал/кг				
	жидкос		Мазут Q ⁱ =9260 ккал/кг				
	твердое топливо (Кузнецкий Д)		78	78	78	78	
	твердое топливо (Харанорский Б1)		74	74	74	74	
КПД котла, не менее:	природный газ	%	90	90	90	90	
	жидкое топливо (дизельное топливо)		90	90	90	90	
	жидкое топливо (мазут)		80	80	80	80	
	твердое топливо (Кузнецкий Д)	кг/ч	45	73	106	150	
Расход топлива:	твердое топливо (Харанорский Б1)	KI/4	98	149	219	320	
	природный газ	м ³ /ч	26	44	62	87	
	жидкое топливо (дизельное топливо)		21	35	49	69	
	жидкое топливо (мазут)	кг/ч	25	41	57	81	
Требуемое разряжение на выходе из топки котла при работе на твердом топливе		°C	20-40				

В комплект поставки котла входит следующее оборудование:

Вентилятор поддува, труба дымовая, вентили запорные, манометр с трехходовым краном, предохранительные клапаны, противонакипная установка ПМУ, щит управления.

КОТЛЫ НЕПОДНАДЗОРНЫЕ!